Asiacrypt 2004

December 5-9, 2004, Jeju Island, Korea

Practical Two-Party Computation Based on the Conditional Gate

Berry SchoenmakersPim TuylsTU EindhovenPhilips Labs Eindhoven

Two-Party Computation:Secure Function EvaluationParty P1Party P2

Secure: f(x,y) is computed *correctly* **Private**: inputs x,y remain *secret* to P_2,P_1 , resp. **Fair**: P_1 and P_2 *both* obtain the output f(x,y)

Example: secure profile matching (e.g., musical prefs, or biometric profiles)

f(x,y) = if distance(x,y) < T then 1 else 0

Outline

- Threshold Homomorphic Cryptosystems
 - main tool: threshold homomorphic ElGamal
- Simple & efficient secure computation
 - Conditional Gate: special multiplication gate
 - Example: Yao's Millionaires problem
 - Extensions: private outputs, fairness (also under DDH assumption)

Framework: THCs

• Threshold Homomorphic Cryptosystem (THC):

- Distributed Key Generation (DKG): to share private key
- Homomorphic Encryption: under single public key
- Threshold Decryption: joint decryption protocol
- THCs form basic tool for secure multiparty computation, following [FH93,JJ00,CDN01,DN03]
 - we focus on 2-party case (but results extends to multiparty case, incl. case of dishonest majority)
- Advantage: low broadcast complexity of O(|C| n k) bits for circuit of size |C|, n parties, security parameter k
- Issue: DKG can be relatively expensive

Many user scenario

- Large population of users (say 1 million)
- Ad-hoc pairs of users U_i and U_j execute these **two** stages:
 - 1) They run a **DKG** (Distributed Key Generation) protocol for a (2,2)-threshold homomorphic cryptosystem.
 - 2) They run a 2-party protocol using the (2,2)-THC.
- Performance: total time to completion (incl. DKG)
 - depends on a variety of factors, where the relative influence of each factor depends on the specific platform (computing scenario)
 - computational complexity
 - communication complexity
 - round complexity (latency)

Popular choice of THCs

- Homomorphic ElGamal
 - DDH assumption
 - $\mathsf{E}_{g,h}(m,r) = (g^r, h^r g^m)$

• Pros:

- *efficient DKG* to share private key α = log_g h [Ped91,...,AF04]
- allows for elliptic curves (exponential security)

• Cons:

limited decryption (only full decryption of *g^m*, from which *m* needs to be recovered still).

• Paillier

- RSA-like assumption
- $E_n(m,r) = (1+n)^m r^n \mod n^2$

Pros:

• *full decryption* of message *m*

• Cons:

- expensive DKG for generating a shared RSA modulus [Gil99,ACS02]. Cost of DKG may dominate total cost.
- only subexponential security

Popular choice of THCs (cont.)

- ELGamal-Paillier amalgam (CraSho'02, DamJur'03)
 - DDH and RSA-like assumption
 - $E_{g,h,n}(m,r) = (g^s \mod n, (1+n)^m (h^s \mod n)^n \mod n^2)$
 - Pros:
 - *full decryption* of message *m*
 - expensive DKG now only at system setup (single, system-wide RSA modulus n for all users)

• Cons:

- large overhead due to large ciphertexts, e.g. compared to ElGamal combined with elliptic curves
 - even if secure computation is mostly bitwise (Boolean circuits)
- two assumptions:
 - factorization of RSA modulus *n* is actually a trapdoor (and could get compromised)

Abstract view of (2,2)-THC

- E(m) denotes a probabilistic encryption of m for a key pair (pk,sk), where sk is shared in a (2,2)threshold fashion
- Homomorphic properties:
 - $E(m_1) E(m_2) = E(m_1 + m_2)$
 - $E(m)^c = E(c m)$

"additive"

"scalar multiplication"

- E(m) E(0) = E(m) "re-randomization (blinding)"
- Decryption done by a protocol between two parties
 - for homomorphic ElGamal: *m* must be from a small range such that *m* can be recovered from *g^m*

Secure Function Evaluation

input stage

evaluation stage

> output stage

Secure Function Evaluation from THCs

- Franklin, Haber (1993)
 - applies to **Boolean** circuits
 - uses GM-ElGamal variant (factoring-based), expensive DKG
 - secure against **passive** adversaries
- Jakobsson, Juels (2000) "Mix and Match"
 - applies to **Boolean** circuits
 - uses ElGamal, easy DKG
 - secure against **active**, **static** adversaries
- Cramer, Damgård, Nielsen (2001)/Damgård, Nielsen (2003)
 - applies to **arithmetic** circuits
 - uses factoring-based cryptosystems (e.g., Paillier), hard DKG
 - secure against **active**, **static**/adaptive adversaries
- Our result
 - applies to "enhanced Boolean" circuits or "restricted arithmetic" circuits
 - more powerful and more efficient than Mix and Match
 - uses ElGamal, easy DKG
 - secure against **active**, **static** adversaries

Addition Gate

- Input: *E*(*x*) , *E*(*y*)
- Output: *E*(*x* + *y*)

• For free, because of homomorphic property: E(x) E(y) = E(x + y)

Also, for given *c*,

 $E(\mathbf{x})^c = E(c \mathbf{x})$

Multiplication Gate

- Input: E(x), E(y)
- Output: *E*(*x y*)
- Hard!

- General solution using just homomorphic ElGamal encryption would solve the Diffie-Hellman problem (computing g^{xy} from g^x and g^y), even knowing the private key for E().
- Thus, use **restricted** multiplication gates

(Auxiliary) Private-Multiplier Gate

- Input: E(x), E(y)
- Output: *E*(*x y*)
- Suppose multiplier x is private to a single party P_i, say.
- Multiplicand y is not restricted.
- Easy: P_i computes the *x*-th power (+Σ proof)
 E(y)^x = E(x y),
 also including re-randomization.

Conditional Gate

- Input: E(*x*), E(*y*)
- Output: E(x y)
- Suppose multiplier x is from a 2-valued domain, say {-1,1}
 - Enables the use of blinding/deblinding using limited decryption.
- Multiplicand y can be any value in Z_q for large prime q, say |q|=160 bits.

$$\begin{array}{c} \textbf{Conditional Gate - Protocol} \\ \text{Let } \textbf{\textit{x}} \in \{-1,1\}, \ y \in Z_q. \\ P_1 & P_2 \\ \text{random } s_1 \in \{-1,1\} \\ E(x_1) \leftarrow E(x)^{s_1} & \underline{E(x_1), E(y_1)} \\ E(y_1) \leftarrow E(y)^{s_1} & \underline{E(x_1), E(y_1)} \\ (+ \Sigma \text{ proof)} & \underline{E(x_2), E(y_2)} \end{array} \quad \begin{array}{c} \text{random } s_2 \in \{-1,1\} \\ E(x_2) \leftarrow E(x_1)^{s_2} \\ E(y_2) \leftarrow E(y_1)^{s_2} \\ (+ \Sigma \text{ proof)} \end{array}$$

- threshold-decrypt $E(x_2)$ and check $x_2 \in \{-1, 1\}$ - output $E(y_2)^{x_2}$.

Note: $E(y_2)^{x_2} = E(s_1s_2x \ s_1s_2y) = E(xy)$ since $s_1^2 = s_2^2 = 1 \pmod{q}$

Simple Application

- Conditional gate corresponds to an "if-thenelse" control structure.
- Verifiable MIX of two ciphertexts: Let $x \in \{0,1\}$ and $y_1, y_2 \in Z_q$. $f(x,y_1,y_2) = \text{if } x=0 \text{ then } (y_1,y_2) \text{ else } (y_2,y_1)$ $= (y_1 + x (y_2 - y_1), y_2 - x (y_2 - y_1))$

Requires a single conditional gate only.

• Input: $E(x_{m-1})$,..., $E(x_0)$ $E(y_{m-1})$,..., $E(y_0)$

- Output: if x > y then E(1) else E(0)
- Circuit, or oblivious program (lsb to msb): $t_0 = 0$ $t_{i+1} = (1 - (x_i - y_i)^2)t_i + x_i (1 - y_i), i = 0, ..., m-1$ Output: t_m
- Circuit requires 2m conditional gates

Yao's Millionaires Problem

- Same as x>y, but with simplification that x and y are private inputs for parties P₁ and P₂, resp.
- Set *t_o* and for *i* = 0,...,*m*-1:

•
$$P_2$$
 sets $h_i = y_i t_i$

- P_1^- sets $t_{i+1} = t_i h_i x_i(t_i 2h_i + y_i 1)$
- Only private-multipliers are used!
- Computational complexity:
 - only about 12*m* modular exponentiations (incl. proofs)
- Round complexity: O(m)
 - can be reduced to O(log *m*)

Some Infeasible Problems

ElGamal encryption: $E(x) = (g^r, h^r g^x)$

- Given E(x), E(y), compute E(xy)
- Given E(x), compute $E(x^2)$ (or, E(1/x))
- Given E(x), compute E(x mod 2)
- For $0 \le x < 2^m$, given E(x), compute $E(x \mod 2)$
- For $0 \le x < 2^m$, given E(x), compute $E(x < 2^{m-1})$
- A way-out for $0 \le x < 2^m$:
 - work bit-wise using $E(x_{m-1})$,..., $E(x_0)$

Extensions

- Private outputs
 - for two party case:
 - f(x,y) = (f₁(x,y), f₂(x,y)) where f₁(x,y) is private output for P₁ f₂(x,y) is private output for P₂
- Fairness: make threshold decryption of outputs of the circuit evaluation fair.

Private outputs

- Given encryption E(m), m should be output to a single party P_i, say.
- Common approach:
 - blind E(m) to E(m+r) where r is chosen by P_j, and decrypt m+r. Only P_j gets m.
- Requires:
 - full decryption of E(*m*+*r*)
 - interaction with P_i

Non-interactive private output

- Input: ElGamal ciphertext (*a*,*b*) for public key $h = g^{\alpha}$
- Output: private output for party P_i is a^{α}
- Let a^{α_i} denote party P_i's decryption share, where α_i is P_i's share of the private key.
- Idea: modify threshold decryption by having each party P_i encrypt a^{αi} under P_j's public key h_j.
 - Encryption for P_j : $(c_i, d_i) = (g^r, h_j^r a^{\alpha_i}) + \text{proof.}$
- Party P_i interpolates

$$\boldsymbol{\Pi}_{\mathsf{i}} \left(\boldsymbol{C}_{\mathsf{i}}, \boldsymbol{d}_{\mathsf{i}} \right)^{\lambda_{\mathsf{i}}} = \left(g^{\boldsymbol{\Sigma}\boldsymbol{r}_{\mathsf{i}}\lambda_{\mathsf{i}}} , h_{\mathsf{j}}^{\boldsymbol{\Sigma}\boldsymbol{r}_{\mathsf{i}}\lambda_{\mathsf{i}}} \boldsymbol{a}^{\boldsymbol{\alpha}} \right)$$

and decrypts to get a^{α} .

Fairness

- 2-party protocol is not robust. If either party stops, the protocol is aborted:
 - during input or evaluation stage: no problem.
 - during threshold-decryption in the output stage: not fair, other party does not learn output
- *"Weak* fairness": achieved by gradual release of decryption shares; can be added modularly onto the non-fair protocol.
- But under standard DDH assumption.

Conclusion

- Simple & Efficient two/multi-party computation using just threshold homomorphic ElGamal.
- Competition between approaches?
 - e.g., Yao's garbled circuits (used by Fairplay):
 - Garbled circuits good at large circuits (or rather, with relatively many gates)
 - good if average number of gates per input is large
 - Gate-by-gate THC approach good at small circuits, or rather circuits with relatively many inputs.
 - good if average number of gates per input is small
- Precise comparison is open!

Author's address

Berry Schoenmakers

Coding and Crypto group Dept. of Math. and CS Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven Netherlands

berry@win.tue.nl http://www.win.tue.nl/~berry/

