
Practical Two-Party Computation
Based on the Conditional Gate

Asiacrypt 2004
December 5-9, 2004, Jeju Island, Korea

Berry Schoenmakers
TU Eindhoven

Pim Tuyls
Philips Labs Eindhoven

Two-Party Computation:
Secure Function Evaluation

Party P1 Party P2

private
input

xprivate
input

yJoint
protocol

(public) output

f(x,y)

Secure: f(x,y) is computed correctly
Private: inputs x,y remain secret to P2,P1, resp.
Fair: P1 and P2 both obtain the output f(x,y)

Example: secure profile matching
(e.g., musical prefs, or biometric profiles)

User 1
Musical
preferences
Pop: yes
Rock: no
Classic: yes

…

x =(1,0,1,…)

x

Client
“Freshly”
measured
biometric
profile

User 2
Musical
preferences
Pop: yes
Rock: yes
Classic: no

…

y =(1,1,0,…)

y

f(x,y)

Server
Stored
biometric
profile
(template)

Joint
protocol

f(x,y) = if distance(x,y)<T then 1 else 0

Outline

Threshold Homomorphic Cryptosystems
main tool: threshold homomorphic ElGamal

Simple & efficient secure computation
Conditional Gate: special multiplication gate
Example: Yao’s Millionaires problem
Extensions: private outputs, fairness (also under
DDH assumption)

Framework: THCs
Threshold Homomorphic Cryptosystem (THC):

Distributed Key Generation (DKG): to share private key
Homomorphic Encryption: under single public key
Threshold Decryption: joint decryption protocol

THCs form basic tool for secure multiparty computation,
following [FH93,JJ00,CDN01,DN03]

we focus on 2-party case (but results extends to multiparty
case, incl. case of dishonest majority)

Advantage: low broadcast complexity of O(|C| n k) bits
for circuit of size |C|, n parties, security parameter k
Issue: DKG can be relatively expensive

Many user scenario
Large population of users (say 1 million)

Ad-hoc pairs of users Ui and Uj execute these two stages:
1) They run a DKG (Distributed Key Generation) protocol for a

(2,2)-threshold homomorphic cryptosystem.
2) They run a 2-party protocol using the (2,2)-THC.

Performance: total time to completion (incl. DKG)
depends on a variety of factors, where the relative influence of
each factor depends on the specific platform (computing
scenario)

computational complexity
communication complexity
round complexity (latency)

Popular choice of THCs
Homomorphic ElGamal

DDH assumption
Eg,h(m,r) = (gr, hr gm)

Pros:
efficient DKG to share
private key α = logg h
[Ped91,…,AF04]
allows for elliptic curves
(exponential security)

Cons:
limited decryption (only full
decryption of gm, from which
m needs to be recovered still).

Paillier
RSA-like assumption
En(m,r) = (1+n)m rn mod n2

Pros:
full decryption of message m

Cons:
expensive DKG for generating a
shared RSA modulus
[Gil99,ACS02]. Cost of DKG may
dominate total cost.
only subexponential security

Popular choice of THCs (cont.)
ELGamal-Paillier amalgam (CraSho’02, DamJur’03)

DDH and RSA-like assumption
Eg,h,n(m,r) = (gs mod n, (1+n)m (hs mod n)n mod n2)

Pros:
full decryption of message m
expensive DKG now only at system setup
(single, system-wide RSA modulus n for all users)

Cons:
large overhead due to large ciphertexts, e.g. compared to ElGamal
combined with elliptic curves

even if secure computation is mostly bitwise (Boolean circuits)
two assumptions:

factorization of RSA modulus n is actually a trapdoor (and could get
compromised)

Abstract view of (2,2)-THC
E(m) denotes a probabilistic encryption of m for a
key pair (pk,sk), where sk is shared in a (2,2)-
threshold fashion
Homomorphic properties:

E(m1) E(m2) = E(m1+m2) “additive”
E(m)c = E(c m) “scalar multiplication”
E(m) E(0) = E(m) “re-randomization (blinding)”

Decryption done by a protocol between two parties
for homomorphic ElGamal: m must be from a small range
such that m can be recovered from gm

Secure Function Evaluation
P1: x

E(x) E(y)
P2: y input

stage

evaluation
stage

Circuit for f

output
stage

E(f(x,y))
f(x,y)

Secure Function Evaluation from THCs
Franklin, Haber (1993)

applies to Boolean circuits
uses GM-ElGamal variant (factoring-based), expensive DKG
secure against passive adversaries

Jakobsson, Juels (2000) “Mix and Match”
applies to Boolean circuits
uses ElGamal, easy DKG
secure against active, static adversaries

Cramer, Damgård, Nielsen (2001)/Damgård, Nielsen (2003)
applies to arithmetic circuits
uses factoring-based cryptosystems (e.g., Paillier), hard DKG
secure against active, static/adaptive adversaries

Our result
applies to “enhanced Boolean” circuits or “restricted arithmetic” circuits

more powerful and more efficient than Mix and Match
uses ElGamal, easy DKG
secure against active, static adversaries

Addition Gate
Input: E(x) , E(y)
Output: E(x + y)

For free, because of homomorphic property:
E(x) E(y) = E(x + y)

Also, for given c,

E(x)c = E(c x)

Multiplication Gate
Input: E (x) , E (y)
Output: E (x y)

Hard!
General solution using just homomorphic
ElGamal encryption would solve the Diffie-
Hellman problem (computing gxy from gx and
gy), even knowing the private key for E().

Thus, use restricted multiplication gates

(Auxiliary) Private-Multiplier Gate
Input: E (x) , E (y)
Output: E (x y)

Suppose multiplier x is private to a single
party Pi, say.
Multiplicand y is not restricted.

Easy: Pi computes the x-th power (+Σ proof)
E (y)x = E (x y),

also including re-randomization.

Conditional Gate
Input: E (x) , E (y)
Output: E (x y)

Suppose multiplier x is from a 2-valued
domain, say {-1,1}

Enables the use of blinding/deblinding using
limited decryption.

Multiplicand y can be any value in Zq for
large prime q, say |q|=160 bits.

Conditional Gate - Protocol
Let x ∈ {–1,1} , y ∈ Zq.

P2P1
random s1 ∈ {–1,1}

- threshold-decrypt E(x2) and check x2 ∈ {–1,1}
- output E(y2)x2.

E(x1), E(y1) random s2 ∈ {–1,1}E(x1) ← E(x)s1

E(y1) ← E(y)s1

(+ Σ proof)
E(x2) ← E(x1)s2

E(y2) ← E(y1)s2

(+ Σ proof)
E(x2), E(y2)

Note: E(y2)x2 = E(s1s2x s1s2y) = E(xy)
since s1

2=s2
2 = 1 (mod q)

Simple Application
Conditional gate corresponds to an “if-then-
else” control structure.

Verifiable MIX of two ciphertexts:
Let x ∈ {0,1} and y1,y2 ∈ Zq.

f(x,y1,y2) = if x=0 then (y1,y2) else (y2,y1)
= (y1 + x (y2 – y1) , y2 – x (y2 – y1))

Requires a single conditional gate only.

Integer comparison x>y
Input: E(xm-1) ,…, E(x0)

E(ym-1) ,…, E(y0)
Output: if x > y then E(1) else E(0)

Circuit, or oblivious program (lsb to msb):
t0 = 0
ti+1 = (1-(xi-yi)2)ti +xi (1-yi), i = 0,…,m-1

Output: tm
Circuit requires 2m conditional gates

Yao’s Millionaires Problem
Same as x>y, but with simplification that x and y are
private inputs for parties P1 and P2, resp.
Set t0 and for i = 0,…,m-1:

P2 sets hi = yi ti
P1 sets ti+1 = ti - hi - xi(ti-2hi +yi-1)

Only private-multipliers are used!

Computational complexity:
only about 12m modular exponentiations (incl. proofs)

Round complexity: O(m)
can be reduced to O(log m)

Some Infeasible Problems
ElGamal encryption: E(x) = (gr, hrgx)

Given E(x), E(y), compute E(xy)
Given E(x), compute E(x2) (or, E(1/x))
Given E(x), compute E(x mod 2)

For 0≤x<2m, given E(x), compute E(x mod 2)
For 0 ≤ x<2m, given E(x), compute E(x<2m-1)

A way-out for 0 ≤ x<2m:
work bit-wise using E(xm-1) ,…, E(x0)

Extensions
Private outputs

for two party case:
f(x,y) = (f1(x,y), f2(x,y))
where f1(x,y) is private output for P1

f2(x,y) is private output for P2

Fairness: make threshold decryption of
outputs of the circuit evaluation fair.

Private outputs
Given encryption E(m), m should be output to
a single party Pj, say.
Common approach:

blind E(m) to E(m+r) where r is chosen by Pj, and
decrypt m+r. Only Pj gets m.

Requires:
full decryption of E(m+r)
interaction with Pj

Non-interactive private output
Input: ElGamal ciphertext (a,b) for public key h = gα

Output: private output for party Pj is aα

Let aαi denote party Pi’s decryption share, where αi
is Pi’s share of the private key.
Idea: modify threshold decryption by having each
party Pi encrypt aαi under Pj’s public key hj.

Encryption for Pj: (ci,di) = (gr, hj
r aαi) + proof.

Party Pj interpolates
Πi (ci,di)λi = (gΣriλi , hj

Σriλi aα)
and decrypts to get aα.

Fairness
2-party protocol is not robust. If either party
stops, the protocol is aborted:

during input or evaluation stage: no problem.
during threshold-decryption in the output stage:
not fair, other party does not learn output

“Weak fairness”: achieved by gradual
release of decryption shares; can be added
modularly onto the non-fair protocol.
But under standard DDH assumption.

Conclusion
Simple & Efficient two/multi-party computation
using just threshold homomorphic ElGamal.
Competition between approaches?

e.g., Yao’s garbled circuits (used by Fairplay):
Garbled circuits good at large circuits (or rather, with
relatively many gates)

good if average number of gates per input is large
Gate-by-gate THC approach good at small circuits, or
rather circuits with relatively many inputs.

good if average number of gates per input is small

Precise comparison is open!

Author’s address

Berry Schoenmakers

Coding and Crypto group
Dept. of Math. and CS

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven
Netherlands

berry@win.tue.nl
http://www.win.tue.nl/~berry/

•
•
•
• • ••
• •
•

• • • •
• • •

•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•

•

•
•
•
• • ••
• •
•• • ••

•
•

•
• • ••

•
•

•
•
•
•

•
•
•

• •

•
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•

•
•
•
• • ••
• •
•

•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
•

•
•
•
•
•

•
•
•

• •

••
•
•
• • ••
• •
•

•

•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•

•
•
•
• • ••
• •
•

•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•

•
•
•
• • ••
• •
•

•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
•
•

• •

•

•
•
•
• • ••
• •
•

•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
•

•
• •

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•

•
•
•
• • ••
• •

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•
•
•
• • ••
• •
••

•
•
• • ••
• •
•

•
•
•
• • ••
• •
•

•User 2

•User 1

Example: “Secure profile matching”
f(x,y) = if distance(x,y)<T then 1 else 0

	Practical Two-Party Computation Based on the Conditional Gate
	Two-Party Computation:Secure Function Evaluation
	Example: secure profile matching(e.g., musical prefs, or biometric profiles)
	Outline
	Framework: THCs
	Many user scenario
	Popular choice of THCs
	Popular choice of THCs (cont.)
	Abstract view of (2,2)-THC
	Secure Function Evaluation
	Secure Function Evaluation from THCs
	Addition Gate
	Multiplication Gate
	(Auxiliary) Private-Multiplier Gate
	Conditional Gate
	Conditional Gate - Protocol
	Simple Application
	Integer comparison x>y
	Yao¡¯s Millionaires Problem
	Some Infeasible Problems
	Extensions
	Private outputs
	Non-interactive private output
	Fairness
	Conclusion
	Author¡¯s address

